
MigratoryData Server

Architecture Guide

Version 5.0
July 19, 2019

Copyright Information

Copyright c© 2007-2019 Migratory Data Systems. ALL RIGHTS RESERVED.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EI-
THER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE DOCUMENT. MIGRA-
TORY DATA SYSTEMS MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PROD-
UCT DESCRIBED IN THIS DOCUMENT AT ANY TIME.

MigratoryData Architecture Guide page 1 of 42

CONTENTS

Contents

1 Introduction 5

1.1 Release . 5

1.2 Related Documents . 5

2 The Problem MigratoryData Solves 6

2.1 The MigratoryData’s Solution . 7

3 Product Overview 10

3.1 Features . 11

3.2 Language Interfaces . 14

3.3 Platform Support . 15

4 Concepts 16

4.1 Messages . 17

4.1.1 Subjects . 17

4.1.2 Snapshot Messages . 18

4.1.3 Retrieve Snapshots via HTTP Requests 19

4.1.4 Character Encoding . 20

4.2 Publish-Subscribe Model . 21

5 MigratoryData Server 23

5.1 Communication Ports . 24

5.1.1 Some Recommended Port Configurations 24

5.2 Monitoring . 29

MigratoryData Architecture Guide page 2 of 42

CONTENTS

5.2.1 Snapshots . 30

5.3 Security . 31

5.4 Entitlement . 33

5.5 Conflation . 34

5.6 Batching . 36

5.7 High-Availability Clustering: Load Balancing and Fault Tolerance 38

5.8 Guaranteed Message Delivery . 39

5.8.1 How to Enable Guaranteed Message Delivery 42

MigratoryData Architecture Guide page 3 of 42

FIGURES

Figures

2.1 Integration of MigratoryData Server with a Web Server. 8

4.1 MigratoryData Publish-Subscribe Model . 22

5.1 MigratoryData Using a Single Communication Port 26

5.2 MigratoryData Communication Ports . 28

5.3 MigratoryData Secure Dual Firewall DMZ Deployment 32

5.4 Circulation of Messages without Batching . 37

5.5 Circulation of Messages with Batching . 37

5.6 Example of Data Recovery With Standard Message Delivery Enabled 40

5.7 Example of Data Recovery With Guaranteed Message Delivery Enabled 41

MigratoryData Architecture Guide page 4 of 42

TABLES

Tables

3.1 MigratoryData API Editions . 14

4.1 The Message Components . 17

4.2 Examples of Invalid Subjects . 18

4.3 Examples of Snapshot Messages . 19

5.1 Examples of Conflated Messages . 35

MigratoryData Architecture Guide page 5 of 42

1 Introduction

1. Introduction

This guide provides an overview of the MigratoryData server and explains its concepts and fea-
tures.

1.1 Release

This guide is part of the documentation set for MigratoryData Server version 5.0.

1.2 Related Documents

• MigratoryData Installation Guide

• MigratoryData Configuration Guide

• MigratoryData API Developer’s Guide and Reference Manual for each language and tech-
nology listed in Table 3.1.

MigratoryData Architecture Guide page 6 of 42

2 The Problem MigratoryData Solves

2. The Problem MigratoryData Solves

Traditionally, web servers deliver data using a request-response interaction model as follows:

1. A user opens a web page in a web browser

2. The web browser makes an HTTP request to the web server and displays the content of
the web page as it is available in the web server at the moment of the request

3. If after the web page is displayed, the content of the page changes in the web server, then
the user will not see the changes until the user manually refreshes the web page in the
browser

A technique named polling is often used to provide users with up-to-date content without the
need for the manual refresh of Step 3 above. The polling technique consists in including some
JavaScript code in the web page: the polling script. The polling script is executed by the web
browser in background as long as the web page is displayed by the browser. The polling script
periodically sends HTTP requests to the web server to check if there are or not any changes in
the content of the web page. If there are no changes, the polling script will do nothing, otherwise
it will display the new content.

While the polling technique can be used to deliver live content for certain live applications, this
technique could easily become very inefficient or not applicable for many other live applications.

Even if the polling script is configured to poll the web server as frequently as a web server can
support, the latency of data (i.e. the time required to propagate data from the server side to
the user) can still be too high for web applications such as a financial portal delivering real-time
market data or a sports betting website where each millisecond counts.

Another example is a live website with many concurrent users. A traditional web server is able
to handle a relative small number of concurrent users. If a website has many concurrent users,
then multiple web servers must be installed on multiple machines. Moreover, each HTTP request
sent by the polling script, just to check if there is or not any fresh data on the server, includes
hundreds of bytes, which are automatically added by the browser to the request: the HTTP
headers. This redundant overhead sent by many users at a high polling frequency produces an
important bandwidth consumption. The need for multiple machines and the high bandwidth

MigratoryData Architecture Guide page 7 of 42

2 The Problem MigratoryData Solves

usage significantly increase the total cost of ownership for the websites with many concurrent
users when using the polling technique to deliver live content.

2.1 The MigratoryData’s Solution

MigratoryData Server delivers data according to a subscribe-publish interaction model as follows:

1. A user sends a WebSocket / HTTP request to the server

2. A persistent TCP connection is created between the user’s browser and the MigratoryData
server

3. The MigratoryData server uses this persistent TCP connection to push data available at
the moment of the request as well as any subsequent data, without any additional requests
from the user.

MigratoryData implements the WebSockets protocol (see the RFC 6455 standard at http:

//tools.ietf.org/html/rfc6455). The recent browsers have support for WebSockets and
MigratoryData creates the streaming TCP connection described at Step 2 above using Web-
Sockets. For the older browsers which do not have support for WebSockets, MigratoryData
implements techniques which still use a single TCP connection for streaming – like WebSockets
do behind the scene – and it’s 100% JavaScript-based (no browser plug-in is required).

Unlike classical web servers or other WebSocket implementations, MigratoryData Server was
designed to scale to a huge number of concurrent users. It has been benchmarked to stream
real-time data to 10 million concurrent clients from a single 1U server in a particular test scenario
and it is now used in production to successfully stream real-time data to millions of end-users
every day.

Note — The goal of MigratoryData Server is not to replace a classical web server
such as Apache, Microsoft IIS, or nginx, but to integrate with such a web server.
On one hand, the web server will be used to provide any static resources necessary
for a web application such as images, text, and server-side scripting. On the other
hand, MigratoryData Server will be used to provide the real-time content to the web
application. Figure 2.1 shows how MigratoryData Server integrates with an existing
web server.

The solution MigratoryData proposes not only is a very scalable solution for adding real-time
capability to web applications, but it also offers many other functionalities.

The same MigratoryData JavaScript API used to build highly scalable real-time web applications
is also available for other technologies. You can use the same API to build native mobile real-time

MigratoryData Architecture Guide page 8 of 42

2 The Problem MigratoryData Solves

Figure 2.1: Integration of MigratoryData Server with a Web Server.

 Web ServerMigratoryData Server

Real-Time Web
 Application

Internet

Indicate continuous bidirectional communication

Indicate a single request for resource

Indicate a single reply

Indicate real-time MigratoryData messages

Indicate a static resource (e.g. an image)

(e.g. Apache, IIS, nginx, etc)

MigratoryData Architecture Guide page 9 of 42

2 The Problem MigratoryData Solves

applications for iOS and Android, as well as other real-time Internet applications written in Java,
.NET, C++, PHP, Python, and Ruby.

MigratoryData can be deployed as a fault-tolerant cluster to enable high availability and guaran-
teed delivery of data even in presence of sudden failures such as hardware failures and network
disconnections. It scales horizontally with built-in load balancing to meet any growth in num-
ber of users. Advanced monitoring and security and many other features are also offered by
MigratoryData.

See Chapter 3.1 to learn more about the main features of MigratoryData Server.

MigratoryData Architecture Guide page 10 of 42

3 Product Overview

3. Product Overview

This chapter introduces MigratoryData Server.

Topics

3.1 Features . 11

3.2 Language Interfaces . 14

3.3 Platform Support . 15

MigratoryData Architecture Guide page 11 of 42

3 Product Overview

3.1 Features

This section describes the main functionalities of MigratoryData Server.

Zero Installation for Web Clients

No installation is necessary on the desktops or mobile devices of users, real-time data is delivered
directly to any web browsers via pure JavaScript (no plug-in required).

Real-Time Bidirectional Data Delivery

Messages are published from server to clients and from clients to server with low message latency
and continuously, as fresh data is available.

Client APIs for Web, Mobile, Desktop, and Server Applications

A common API with libraries for the the most popular technologies – JavaScript, iOS, Android,
Java, .NET, C++, PHP, Python, and Ruby – can be used to simply add real-time features to
your applications.

Extreme Vertical Scalability

MigratoryData Server has been benchmarked to support 10 million concurrent connections in a
particular test scenario on a single 1U server (see our blog) and it is now used in production to
stream data to millions of end-users daily.

Horizontal Scalability

Besides its high vertical scalability, MigratoryData Server scales horizontally with built-in load
balancing to meet any growth in number of users of your real-time application.

Weighted Load Balancing

The load balancing can be controlled to take into account the hardware differences of the machines
which host the instances of MigratoryData Server.

MigratoryData Architecture Guide page 12 of 42

3 Product Overview

Fault Tolerance

Multiple instances of MigratoryData Server can be deployed as a fault tolerant cluster with no
single point of failure offering 24x7 high availability. Please refer to Section 5.7 for a detailed
presentation.

Guaranteed Message Delivery

The cluster of MigratoryData servers can be configured to guarantee the end-to-end delivery of
messages even in the event of unexpected events such as hardware failures or network disconnec-
tions. Guaranteed Message Delivery is presented in detail in Section 5.8.

Low Bandwidth

MigratoryData implements an efficient proprietary communication protocol that adds to each
message a small constant overhead.

Milliseconds Latency

Fresh data available on the server is delivered to users in milliseconds.

High Throughput

MigratoryData Server scales up to 10 Gbps on 10 Gigabit Ethernet while streaming 2 million
messages per second on a single 1U server.

Security

MigratoryData Server uses HTTPS, TLS/SSL encryption, dual firewalls, and entitlement. Section
5.3 is focused on security.

Advanced Monitoring

Secure (TLS/SSL) and password-protected JMX, HTTP, and PUSH monitoring services are
exposed by MigratoryData Server. See Section 5.2 for details.

MigratoryData Architecture Guide page 13 of 42

3 Product Overview

Internationalization

MigratoryData Server accepts and supports content through the Unicode character set.

Multi-Core CPU Optimized Architecture

MigratoryData Server can be configured to distribute its activity on a configurable number of
CPU cores.

Running on a dedicated server, MigratoryData Server will automatically take advantage of all
CPU cores available (no configuration tuning is needed). Otherwise, if MigratoryData Server
runs on a shared server, it can be configured to use only a part of the CPU cores available.

Capacity Planning

You can estimate the hardware and the number of MigratoryData Server instances required for
your use case by using MigratoryData Benchmark Kit, a software tool able to:

• connect a configurable number of concurrent clients

• subscribe to a configurable number of subjects per client

• publish messages of a configurable size at a configurable frequency

MigratoryData Architecture Guide page 14 of 42

3 Product Overview

3.2 Language Interfaces

MigratoryData offers a common client API for various languages and technologies. You can use
the different editions of the MigratoryData Client API to quickly add real-time features to your
existing Internet applications. The available API editions are listed in Table 3.1.

Application Type Client API Functions

Web Applications JavaScript publish and subscribe

Mobile Applications iOS publish and subscribe

Android publish and subscribe

Desktop / Server Applications Java publish and subscribe

.NET publish and subscribe

C++ publish and subscribe

PHP publish

Python publish

Ruby publish

Table 3.1: MigratoryData API Editions

MigratoryData Architecture Guide page 15 of 42

3 Product Overview

3.3 Platform Support

Written in Java, MigratoryData Server runs on all major operating systems: Linux/Unix, Mac
OS, Windows, and potentially any other platform having support for OpenJDK Java Runtime
Environment (JRE) version 8 or later.

MigratoryData Server comes with 64-bit installers for RPM-based and DEB-based Linux distri-
butions. Also, a platform-independent tarball is available.

The recommended operating systems for production deployments are Red Hat Enterprise Linux
or Centos 6 or later and Debian 7 or later.

MigratoryData Architecture Guide page 16 of 42

4 Concepts

4. Concepts

This chapter describes the MigratoryData concepts: messages and publish-subscribe model.

Topics

4.1 Messages . 17

4.1.1 Subjects . 17

4.1.2 Snapshot Messages . 18

4.1.3 Retrieve Snapshots via HTTP Requests 19

4.1.4 Character Encoding . 20

4.2 Publish-Subscribe Model . 21

MigratoryData Architecture Guide page 17 of 42

4 Concepts

4.1 Messages

A MigratoryData message has several pieces of information. Table 4.1 shows the message com-
ponents exposed to the APIs.

Component Name Required Component Description

Subject Mandatory The subject of the message

Content Mandatory The content of the message

Fields Optional The fields of the message, as a
dictionary. The keys are the field
names, and the corresponding val-
ues are the field values.

Table 4.1: The Message Components

Note — Depending on the configuration of MigratoryData Server and depending
on the API usage, messages may include other pieces of information. For example,
supposing the Guaranteed Message Delivery feature is enabled, then MigratoryData
messages will be enriched with information related to sequence numbers used to
achieve Guaranteed Message Delivery. However, such information is used internally
only by the MigratoryData server and its APIs, it is not exposed to the developers in
the API.

MigratoryData APIs provide methods to create messages from application-specific data, publish
messages, and retrieve the application-specific data from messages when received by the clients.

While the content of the message, the field names, and field values can be any sequences of bytes,
the subject of the message must respect a particular syntax as described in the next section.

4.1.1 Subjects

The subjects of the messages are used by both subscribers (to listen for specific messages) and
by publishers (to publish messages on particular subjects).

A subject is a string of characters that respects a syntax similar to the Unix absolute paths.
It consists of an initial slash (/) character followed by two or more character strings – called
segments – separated by a single slash (/) character. Within a segment, the slash (/) character
is reserved. Each subject must have two or more segments.

For example, the following character string, composed by the segments Stocks, NYSE, and IBM,
is a valid subject for MigratoryData Server:

MigratoryData Architecture Guide page 18 of 42

4 Concepts

/Stocks/NYSE/IBM

Table 4.3 shows several examples of invalid subjects.

Invalid Subject Reason

/Stocks//IBM/BID The slash (/) character is not allowed in a segment or
because the second segment is empty (any segment must
contain at least one character)

Stocks/IBM/BID The subject does not start with a slash (/) character

/Stocks/IBM/BID/ The last segment is empty

/ Subject formed from a single empty segment

/Stocks Subject has only one segment (two or more are required)

Table 4.2: Examples of Invalid Subjects

4.1.2 Snapshot Messages

For each subscribed subject X, MigratoryData Server maintains an snapshot message defined as
follows:

• The subject of the snapshot message is X

• The content of the snapshot message is the content of the most recent published message
with subject X

• The field name set of the snapshot message is the union of the field name sets of all
messages published with subject X

• The value of each field of the snapshot message is the most recent value of that field
published by messages with subject X

According to this definition, the snapshot message of a subject, which has only messages without
fields, coincides with the most recent published message for that subject.

Table 4.3 shows the snapshot message of the subject /Stocks/NYSE/IBM as new messages are
received by MigratoryData Server.

MigratoryData Architecture Guide page 19 of 42

4 Concepts

Time Message Snapshot Message

10:12 subject=/Stocks/NYSE/IBM subject=/Stocks/NYSE/IBM

(first message) content=193 content=193

field-volume=6.62M field-volume=6.62M

10:13 subject=/Stocks/NYSE/IBM subject=/Stocks/NYSE/IBM

content=192 content=192

field-volume=6.62M

10:15 subject=/Stocks/NYSE/IBM subject=/Stocks/NYSE/IBM

content=195 content=195

field-ask=190 field-ask=190

field-volume=6.62M

10:20 subject=/Stocks/NYSE/IBM subject=/Stocks/NYSE/IBM

content=193 content=193

field-bid=194 field-bid=194

field-ask=191 field-ask=191

field-volume=6.62M

Table 4.3: Examples of Snapshot Messages

When a client subscribes to a subject, MigratoryData Server will firstly send to that client the
snapshot message of that subject (if available), then it will send the subsequent real-time messages
for that subject as they are received in MigratoryData Server from the publishers. See Section
4.2 to learn more about the publish-subscribe model.

You can disable Snapshot Messages by configuring the MigratoryData server as follows:

PublishSnapshotMessage = false

4.1.3 Retrieve Snapshots via HTTP Requests

You can get the snapshot message of a subject from the MigratoryData server via a simple HTTP
request.

MigratoryData Architecture Guide page 20 of 42

4 Concepts

Supposing the MigratoryData server is accessible via the URL https://push.example.com,
then you can retrieve the snapshot message of a particular subject X via the HTTP request:

https://push.example.com/snapshot?subject=X

If the entitlement feature is enabled for the MigratoryData server, then you should also include
the authorization token in the HTTP request. Supposing the entitlement token of a user is U

and the user identified by the token U is allowed to subscribe to the subject X, then, to retrieve
the snapshot of the subject X, use:

https://push.example.com/snapshot?subject=X&token=U

Note — Currently the snapshot message retrieved via a HTTP request does not
include the fields.

4.1.4 Character Encoding

The UTF-8 character encoding is used for all components of MigratoryData messages including
for the message content, message subject, field names and field values. Thus, MigratoryData
Server is able to handle messages with any international character set including ASCII.

MigratoryData Architecture Guide page 21 of 42

4 Concepts

4.2 Publish-Subscribe Model

A MigratoryData environment typically consists of:

• One or more MigratoryData servers

• Subscribers which are consumer clients

• Publishers which are publisher clients

Messages are asynchronously sent from publishers to the MigratoryData server and from the
MigratoryData server to subscribers.

The Publish-Subscribe Model is defined as follows. A client connects to a MigratoryData server
and subscribes to a subject X. Depending whether the subject X is already subscribed by other
clients or not, one of the following two situations will happen:

• If X is already subscribed, then MigratoryData Server will send to that client the initial
snapshot message for the subject X and any subsequent message received from publishers.

• If X is not subscribed by any other client, then MigratoryData Server will retain the sub-
scription request and will publish messages with the subject X once received from publishers.

When the client is not interested anymore in messages with subject X, it can unsubscribe from
the subject X. Depending whether the subject X is also subscribed by other clients, one of the
following two situations will happen:

• If X is also subscribed by other clients, then MigratoryData Server will simply unsubscribe
that client from the subject X and it will not send anymore messages with subject X to that
client.

• If X is not subscribed by any other client, then MigratoryData Server will unsubscribe that
client from the subject X. Also, it will remove the subscription interest for the subject X.

Note — The interaction of the Publish-Subscribe Model described above slightly
changes if any of the Entitlement, Conflation, Batching, or Guaranteed Message
Delivery features is enabled. See Section 5.4 and Section 5.5 and Section 5.6 and
Section 5.8 to learn how the publish-subscribe interaction works when the Entitlement
or Conflation or Batching or Guaranteed Message Delivery feature is enabled.

Diagram 4.1 shows an example of the publish-subscribe interaction. Note that Subscriber 1

which subscribes to the subject A receives only messages with the subject A. It does not receive
messages with subject B as it does not subscribe to the subject B.

MigratoryData Architecture Guide page 22 of 42

4 Concepts

Figure 4.1: MigratoryData Publish-Subscribe Model

MigratoryData Server

 Subscriber 1

 Publisher of messages
with the subjects A and B

Subscriber to the
 subjects A and B

Continous publication

Subscription request

Messages with subject B

Messages with subject A

Subscriber to
the subject A

 Subscriber 2

Publisher

Initial snapshot message for subject A

Initial snapshot message for subject B

A

B

B

A

B

A

B

B

A

B
B

A

A

A

A

A

B

A

B

MigratoryData Architecture Guide page 23 of 42

5 MigratoryData Server

5. MigratoryData Server

This chapter describes the main features of MigratoryData Server.

Topics

5.1 Communication Ports . 24

5.1.1 Some Recommended Port Configurations 24

5.2 Monitoring . 29

5.2.1 Snapshots . 30

5.3 Security . 31

5.4 Entitlement . 33

5.5 Conflation . 34

5.6 Batching . 36

5.7 High-Availability Clustering: Load Balancing and Fault Toler-
ance . 38

5.8 Guaranteed Message Delivery . 39

5.8.1 How to Enable Guaranteed Message Delivery 42

MigratoryData Architecture Guide page 24 of 42

5 MigratoryData Server

5.1 Communication Ports

The web clients (built with MigratoryData Client API for JavaScript), which run in the recent
web browsers having WebSockets support, will communicate with the MigratoryData server using
the WebSocket protocol (see RFC 6455). The other web clients, which run in the older browsers
not having WebSockets support, any other web, mobile, and desktop client will communicate
with the MigratoryData server using the HTTP protocol.

Behind the scene, every client (communicating either via the WebSocket or via the HTTP proto-
col) uses a single persistent streaming TCP connection to communicate with the MigratoryData
server. Thus, at a higher level of abstraction, MigratoryData Server can be viewed as a TCP
server.

MigratoryData Server is able to listen for TCP connections on one or more ports. If the machine
running the MigratoryData server is multi-homed (i.e. it has multiple IP addresses associated
either with multiple network interfaces or with a single network interface but using multiple IP
aliases), then MigratoryData Server can be configured to listen on one or more ports of one or
more IP addresses of the machine.

Moreover, the ports can be configured to accept encrypted connections via HTTP Secure (https)
or WebSocket Secure (wss). Note that MigratoryData Server can be configured to accept normal
connections, encrypted connections, or both encrypted and normal connections.

Both protocols HTTP and WebSocket use the same standard port numbers: 80 for normal
connections and 443 for encrypted connections.

Note — The overhead introduced by the encrypted connections compared to the
normal connections is a relatively small one. Thus, the recommendation is to config-
ure MigratoryData Server to use encrypted connections. In this way, your data will
be securely delivered. Encrypted connections also help to avoid the interference with
certain security solutions.

For example, when using normal connections, certain antiviruses may decide to block
the data streaming between MigratoryData Server and the client. Such an antivirus
software wrongly interprets the data streaming as a potential security attack. Oth-
erwise, when using encrypted connections, the antivirus software is unable to inspect
the data received from MigratoryData Server so it will not block the data streaming.

5.1.1 Some Recommended Port Configurations

MigratoryData Server should be typically configured to accept client connections on a public
address – say push.example.com. Ideally, it should be configured to accept only encrypted
client connections via the standard https / wss port 443. Thus, it’s configuration should be as
follows:

MigratoryData Architecture Guide page 25 of 42

5 MigratoryData Server

ListenEncrypted = push.example.com:443

Using this configuration, any web, mobile, or desktop client will be able to connect in the same
way to MigratoryData Server.

Figure 5.1 shows how both subscribers and publishers securely connect to a single open port of
MigratoryData Server.

MigratoryData Architecture Guide page 26 of 42

5 MigratoryData Server

Figure 5.1: MigratoryData Using a Single Communication Port

Publisher 1

Subscriber 1 Subscriber 10,000,000...

Internet (or Intranet)

Open a single TCP port
 443 for all clients

Publisher 10

Intranet (or Internet)

...

MigratoryData Server

push.example.com:443

MigratoryData Architecture Guide page 27 of 42

5 MigratoryData Server

While it’s perfectly valid and beneficial to use a single network address and port to accept all
clients, there are setups when MigratoryData Server is deployed in the DMZ and the publisher
clients are deployed behind the second firewall of the DMZ to integrate with the backend servers
(see Section 5.3). In this setup, the publishers typically are not allowed to access Internet
addresses, thus they will not be allowed to connect to push.example.com:443. For such a
setup, a secondary LAN address – say 192.168.1.1 – should be configured on the machine
running MigratoryData Server. For this local address, you can configure any port available to
accept connections from publishers, provided however that the port is allowed by the firewall. As
in the case of the client port, you can configure the publisher port to accept either normal or
encrypted connections.

Figure 5.2 shows the TCP ports used by MigratoryData Server to communicate with its clients
and publishers.

Note — A new port should be opened if you enable the JMX monitoring feature, and
another new port should be also opened if you enable the HTTP monitoring feature.
These monitoring ports (not shown in Figures 5.1 and 5.2) can be any ports available,
provided that these ports are allowed by your firewall. You can configure these ports
on the LAN address or on the public address. As in the case of the subscriber port
and the publisher port, you can configure these monitoring ports for either normal or
encrypted connections. Also note that the access to the monitoring information can
be configured with or without password authentication.

Also, up to five ports are used for internal communication among the cluster members.

MigratoryData Architecture Guide page 28 of 42

5 MigratoryData Server

Figure 5.2: MigratoryData Communication Ports

Publisher 1

Subscriber 1 Subscriber 10,000,000...

Internet (or Intranet)

Open a TCP port 443
on a public address
for subscribers

Publisher 10

Intranet

...

MigratoryData Server

push.example.com:443

192.168.1.1:8800
Open a TCP port 8800
on the local address
for publishers

MigratoryData Architecture Guide page 29 of 42

5 MigratoryData Server

5.2 Monitoring

MigratoryData Server supports the Java Management Extensions (JMX) technology to provide
monitoring and statistics information. Monitoring and statistics information can be also retrieved
with HTTP requests. Finally, monitoring information can be obtained in real-time using any
MigratoryData Client API by subscribing to certain special subjects named meta-subjects (PUSH).

You can configure MigratoryData Server to permit access to the monitoring and statistics infor-
mation with or without password authentication, via normal or encrypted connections for both
HTTP monitoring and JMX monitoring.

Access to PUSH monitoring using meta-subjects follows the security and entitlement
rules used for subjects in general. So, there are no authentication and encryption
parameters specifically for PUSH monitoring, unlike for JMX and HTTP monitoring.

The indicators which can be monitored are:

• The number of connected users to MigratoryData Server

• The number of connections per second established with MigratoryData Server

• The number of disconnections per second from MigratoryData Server

• The number of incoming messages per second received from publishers

• The number of outgoing messages per second sent to subscribers

• The number of incoming bytes per second received from publishers

• The number of outgoing bytes per second sent to subscribers

The following statistics are computed for the parameters above:

• Maximum

• Average

• Standard Deviation

At each moment, the values of the statistics above are available for the following periods of time:

• Last minute, last 5 minutes, and last 15 minutes

• Last hour, last 5 hours, and last 15 hours

MigratoryData Architecture Guide page 30 of 42

5 MigratoryData Server

• Last day, last 5 days, and last 15 days

• Last month, last 5 months, and last 15 months

The jconsole utility that is freely available with OpenJDK can be used to connect to the JMX
monitoring service of MigratoryData Server. Also there are many JMX commercial tools that
provide enhanced functionality like dashboards and database persistence that can be used to
connect to the JMX monitoring service of MigratoryData Server.

The HTTP monitoring service can be used for charting using any available RRDTool-based
graphical solutions or other HTTP monitoring tools.

5.2.1 Snapshots

A service which allows you to connect to MigratoryData Server like any other client and retrieve
the snapshot message of a subject (without getting subsequent messages) is also available. This
service is accessible using simple HTTP requests. For example, you can use this service to check
whether:

• An instance of MigratoryData Server accepts clients quick enough

• The latest data of a subject available in MigratoryData Server correspond to the latest
published data

MigratoryData Architecture Guide page 31 of 42

5 MigratoryData Server

5.3 Security

The security of MigratoryData Server is assured by having:

• SSL/TLS encryption of the TCP connections with the clients

• SSL/TLS encryption and authentication for both the JMX and HTTP monitoring services

• Cluster members connect each other using authentication with password key

• Entitlement (see Section 5.4)

• MigratoryData Server can be configured to run as a normal (non-root) user

• Configurable SSL/TLS ciphers to be used for the encrypted SSL/TLS connections

• Dual firewall and DMZ policy

Transport Layer Security (TLS) and Secure Sockets Layer (SSL) are cryptographic protocols that
provide privacy and data integrity on TCP/IP communications (see RFC 5246). An attacker can
capture the network traffic on Internet but cannot decrypt the data.

The Demilitarized Zone (DMZ), named after the military usage of the term, is a subnetwork that
contains and exposes an organization’s external services to a larger, untrusted network (e.g. the
Internet). The purpose of a DMZ is to add an additional layer of security to an organization’s
Local Area Network (LAN); an external attacker only has access to equipment in the DMZ, rather
than the whole of the network.

Figure 5.3 shows a secure dual firewall DMZ deployment of MigratoryData Server.

MigratoryData Architecture Guide page 32 of 42

5 MigratoryData Server

Figure 5.3: MigratoryData Secure Dual Firewall DMZ Deployment

Migratory PushServer

MigratoryData Server

Subscriber

Publisher

DMZ

Front End Firewall

Back End Firewall

SSL/TLS

SSL/TLS

LAN

Internet

push.example.com:443

192.168.1.1:8800

Open a single port 443
for incoming connections

No open ports for
incoming connections!
It's the Publisher
which connects to
MigratoryData Server

MigratoryData Architecture Guide page 33 of 42

5 MigratoryData Server

5.4 Entitlement

The goal of the Entitlement feature is to offer a data control mechanism such that every client
will access only messages with the subjects for which it was authorized to subscribe and will
publish messages only for the the subjects it was authorized.

The entitlement workflow is as follows:

1. Enable the Entitlement feature in MigratoryData Server by setting its parameter Entitlement
on true.

2. Use the API call MigratoryDataClient.setEntitlementToken() to assign an authen-
tication token to a client. The token is any UTF-8 string (typically obtained from your
backend servers following an authentication phase for that client).

3. Define your entitlement rules using the MigratoryData Extension API.

See the documentation of MigratoryData Extension API to learn how to build your own entitle-
ment rules.

MigratoryData Architecture Guide page 34 of 42

5 MigratoryData Server

5.5 Conflation

Conflation is the process of aggregating messages with the same subject together for a period of
time and sending the conflated message which results to a client. The conflated message for a
subject X is defined as follows:

• The subject of the conflated message is X

• The content of the conflated message is the content of the most recent message with the
subject X published during the last conflation time period

• The field name set of the conflated message is the union of the field name sets of all
messages with the subject X published during the last conflation time period

• The value of each field of the snapshot message is the most recent value of that field
published by messages with the subject X during the last conflation time period

When a client subscribes to a subject, it can specify, besides the subject name, a conflationTime.
MigratoryData Server will firstly provide to the client, as in the case of a simple subscription,
the snapshot message of that subject. Then it will aggregate the subsequent messages with
that subject, and will publish a conflated message every conflationTime milliseconds if there
are messages to aggregate. Note that conflationTime should be a multiple of 100 millisec-
onds. Otherwise, it will be rounded to the nearest multiple of 100 milliseconds. For example,
78 milliseconds conflation time will be rounded to 0 milliseconds (i.e. no conflation - messages
are published on a one-by-one basis), 547 milliseconds conflation time will be rounded to 500

milliseconds, 887 milliseconds conflation time will be rounded to 800 milliseconds etc

The Conflation feature is especially useful for application with high volume of data such as a
trading application. The financial instruments are typically represented as subjects. For some
financial instruments only the last value is of interest at a given time, the previous values are
not useful any more. Thus, to reduce the volume of data, certain high-volume data streaming
applications may use subscriptions with conflation for some or all subjects.

Table 5.1 shows the incoming messages from publishers and the outgoing conflated messages
published by MigratoryData Server to a client that subscribed with a 5-second conflation time to
the subject /Stocks/NYSE/IBM.

MigratoryData Architecture Guide page 35 of 42

5 MigratoryData Server

Time Incoming Message Outgoing Conflated Message

10:12:00 subject=/Stocks/NYSE/IBM NONE (client not subscribed yet)

(1st message for content=193

/Stocks/NYSE/IBM) field-volume=6.62M

10:12:32 subject=/Stocks/NYSE/IBM NONE (client not subscribed yet)

content=192

field-bid=194

10:12:40 NONE subject=/Stocks/NYSE/IBM

(client subscribes content=192

with 5-second field-volume=6.62M

conflation time) field-bid=194

(this is the initial snapshot message)

10:12:41 subject=/Stocks/NYSE/IBM NONE

content=195 (the message is aggregated in memory)

field-ask=192

10:12:43 subject=/Stocks/NYSE/IBM NONE

content=196 (the message is aggregated in memory)

field-bid=197

10:12:45 NONE subject=/Stocks/NYSE/IBM

content=196

field-ask=192

field-bid=197

(the 5-second conflation time expired,

send the conflated message)

10:12:50 NONE NONE (no new messages)

10:12:55 NONE NONE (no new messages)

...

Table 5.1: Examples of Conflated Messages

MigratoryData Architecture Guide page 36 of 42

5 MigratoryData Server

5.6 Batching

Batching is the process of collecting messages together for a period of time or until a total size
is reached before sending them in a single I/O operation to a client.

ACM

Note — Unlike the Conflation feature (see Section 5.5), the Batching feature does
not perform any message aggregation. When the period of time for batching expires,
then all messages collected during the batching period are sent to the client in a single
batch. On the other hand, if the Conflation feature is enabled, when the period of
time for conflation expires, only a single message is sent to the client for each subject,
which is an aggregation of all messages collected during the conflation time for that
subject.

The Batching feature can be enabled or disabled in the configuration of MigratoryData Server.

To enable the Batching feature, a period of pre-configured time and/or a pre-configured size
should be configured in MigratoryData Server. Once enabled, MigratoryData Server will not
send individually every message to the client, instead it will send messages in batches, thus
MigratoryData Server will perform a single I/O network operation for a single batch (that contains
a number of messages).

Depending on your use case, batching can help you to optimize network I/O, bandwidth usage,
and paradoxically even latency as explained in the following.

Batching messages implies that the individual messages will have to wait until the batching time
expires or until the batching size is reached (whichever comes first, if both parameters are enabled)
and then the whole bunch of messages grouped together in a batch will be sent on the network
having the final destination a client.

When the rate of messages per second is high, without batching, the time spent on network I/O
is significantly increased and the message latency without batching is actually worse than the
latency with batching.

Figure 5.4 and Figure 5.5 show the circulation of messages without and with batching enabled.

MigratoryData Architecture Guide page 37 of 42

5 MigratoryData Server

Figure 5.4: Circulation of Messages without Batching

MigratoryData Server

4

2

3

1

Messages

I/O network
 operations

Client

Client

Client

Figure 5.5: Circulation of Messages with Batching

 MigratoryData Server

4

2

3

1

Messages

I/O network
 operations

Client

Client

Client

MigratoryData Architecture Guide page 38 of 42

5 MigratoryData Server

5.7 High-Availability Clustering: Load Balancing and Fault
Tolerance

You can deploy multiple instances of MigratoryData Server as a cluster to achieve:

• High Availability through Fault Tolerance

• Horizontal Scalability through Load Balancing

Both Load Balancing and Fault Tolerance are built-in features of MigratoryData Server. Thus,
you don’t need any load balancers or other networking hardware to achieve High Availability and
Horizontal Scalability of your real-time application.

There are two clustering modes offering different qualities of service for message delivery:

• Standard Message Delivery

• Guaranteed Message Delivery

To enable Standard Message Delivery, you will need to deploy a cluster of at least two Migratory-
Data servers. To enable Guaranteed Message Delivery, you will need at least three MigratoryData
servers for your cluster.

Both clustering modes offer reliable message delivery and high availability, including automatic
client reconnection if the connection between a client and a cluster member goes down or if
a cluster member goes down. Guaranteed Message Delivery offers further quality of service as
detailed in Section 5.8.

MigratoryData Architecture Guide page 39 of 42

5 MigratoryData Server

5.8 Guaranteed Message Delivery

All entities which communicate with the MigratoryData server use the TCP protocol at the
transport layer which is a reliable protocol. Also, in the previous section related to High Availability
Clustering, we saw that MigratoryData Server can be deployed such that it will continue to work
even if a sudden failure occurs.

Thus, High Availability Clustering and the use of the reliable TCP protocol already offer reliable
message delivery.

Guaranteed Message Delivery offers even more reliability as follows:

• With Standard Message Delivery, when a client reconnects to another cluster member after
a failover, it will get the latest messages of its subscribed subjects.

• With Guaranteed Message Delivery, when a client reconnects to another cluster member
after a failover, it will get not only the latest messages of its subscribed subjects but it will
also get all the messages for its subscribed subjects published during the failover period.

Figure 5.6 shows an example of data recovery with Standard Message Delivery enabled. Note
that the two messages published at 10:12:00 and at 10:12:05 during the failover recovery are
aggregated in the cluster member B and when the client reconnects to B it will get the most
recent values for its subscribed subject /Stocks/IBM.

Figure 5.7 shows an example of data recovery with Guaranteed Message Delivery enabled. Note
that the two messages published at 10:12:00 and at 10:12:05 during the failover recovery are
received by the client when it reconnects to the cluster member B.

MigratoryData Architecture Guide page 40 of 42

5 MigratoryData Server

Figure 5.6: Example of Data Recovery With Standard Message Delivery Enabled

MigratoryData Server A

Publisher
 Stocks

Client

MigratoryData Server B

Disconnect from A at: 10:11:50
 Reconnect to B at: 10:12:20

Subject: /Stocks/IBM
Content: 23
Field_Time: 10:11:05
Field_Vol: 3456

Subject: /Stocks/IBM
Content: 25
Field_Time: 10:12:00
Field_ASK: 26

Subject: /Stocks/IBM
Content: 31
Field_Time: 11:14:03
Field_BID: 30

Subject: /Stocks/IBM
Content: 23
Field_Time: 10:11:05
Field_Vol: 3456

Subject: /Stocks/IBM
Content: 25.5
Field_Time: 10:12:05
Field_ASK: 26
Field_BID: 24
Field_Vol: 3456

Subject: /Stocks/IBM
Content: 31
Field_Time: 11:14:03
Field_BID: 30

Subject: /Stocks/IBM
Content: 25.5
Field_Time: 10:12:05
Field_BID: 24

MigratoryData Cluster

MigratoryData Architecture Guide page 41 of 42

5 MigratoryData Server

Figure 5.7: Example of Data Recovery With Guaranteed Message Delivery Enabled

MigratoryData Server A

Publisher
 Stocks

Client

MigratoryData Server B

Disconnect from A at: 10:11:50
 Reconnect to B at: 10:12:20

Subject: /Stocks/IBM
Content: 23
Field_Time: 10:11:05
Field_Vol: 3456

Subject: /Stocks/IBM
Content: 25
Field_Time: 10:12:00
Field_ASK: 26

Subject: /Stocks/IBM
Content: 31
Field_Time: 11:14:03
Field_BID: 30

Subject: /Stocks/IBM
Content: 23
Field_Time: 10:11:05
Field_Vol: 3456

Subject: /Stocks/IBM
Content: 31
Field_Time: 11:14:03
Field_BID: 30

Subject: /Stocks/IBM
Content: 25.5
Field_Time: 10:12:05
Field_BID: 24

Subject: /Stocks/IBM
Content: 25
Field_Time: 10:12:00
Field_ASK: 26

Subject: /Stocks/IBM
Content: 25.5
Field_Time: 10:12:05
Field_BID: 24

MigratoryData Cluster

MigratoryData Architecture Guide page 42 of 42

5 MigratoryData Server

5.8.1 How to Enable Guaranteed Message Delivery

Guaranteed Message Delivery is implemented using sequence numbers and a cache for messages.
The sequence numbers are used to retrieve from the cache of the MigratoryData server the
missing messages only when it is necessary. Thus, Guaranteed Message Delivery implementation
does not use acknowledgement notifications for published messages which would add significant
overhead. Thus, Guaranteed Message Delivery is very lightweight so that you can enable real-time
guaranteed delivery of data with a negligible overhead.

In the MigratoryData server, configure the parameter ClusterDeliveryMode to Guaranteed as
follows:

ClusterDeliveryMode = Guaranteed

While Guaranteed Message Delivery is easy to configure and use, its implementation involves
sophisticated distributed algorithms to achieve in-memory cache synchronization between the
MigratoryData servers of the cluster. MigratoryData Server automatically synchronizes the cache
of the subjects for each cluster member, even in presence of failures. The following paper “Reliable
Messaging to Millions of Users with MigratoryData” available at:

https://arxiv.org/pdf/1712.09876.pdf

provides more details on how Guaranteed Message Delivery is achieved internally. This is a preprint
of the paper originally presented at the ACM/IFIP/USENIX International Middleware Conference
2017, University of Nevada, Las Vegas and published in the proceedings of Middleware 2017,
copyright ACM, 2017.

MigratoryData Architecture Guide page 43 of 42

5 MigratoryData Server

MigratoryData Architecture Guide page 44 of 42

