
MigratoryData Client API for JavaScript

Developer’s Guide and Reference Manual

November 7, 2020

Contents

1 Developer's Guide 1

1.1 Overview . 1

1.2 Creating JavaScript clients for MigratoryData Server . 1

1.2.1 Step 1 - Include the library . 1

1.2.2 Step 2 - Specify the cluster of MigratoryData servers where to connect to 1

1.2.3 Step 3 - Define the handler function for real-time messages 2

1.2.4 Step 4 - Define the handler function for status notifications 2

1.2.5 Step 5 - Subscribe to subjects and publish messages . 2

1.2.6 Step 6 - Handle the real-time messages and status notifications 2

1.3 Examples . 3

2 Deprecated List 5

3 Class Index 7

3.1 Class List . 7

4 Class Documentation 9

4.1 MigratoryDataClient Class Reference . 9

4.1.1 Detailed Description . 10

4.1.2 Member Function Documentation . 11

4.1.2.1 setServers(string[] servers, boolean connect) 11

4.1.2.2 setMessageHandler(function messageHandler) 12

4.1.2.3 setStatusHandler(function statusHandler) . 13

4.1.2.4 setEntitlementToken(string token) . 14

4.1.2.5 subscribe(string[] subjects) . 14

iv CONTENTS

4.1.2.6 subscribeWithHistory(string[] subjects, int numberOfHistoricalMessages) 15

4.1.2.7 subscribeWithConflation(string[] subjects, int conflationMillis) 16

4.1.2.8 unsubscribe(string[] subjects) . 16

4.1.2.9 publish(Object message) . 16

4.1.2.10 getSubjects() . 17

4.1.2.11 notifyAfterReconnectRetries(int retries) . 17

4.1.2.12 setQuickReconnectInitialDelay(int seconds) . 17

4.1.2.13 setQuickReconnectMaxRetries(int retries) . 19

4.1.2.14 setReconnectPolicy(string policy) . 19

4.1.2.15 setReconnectTimeInterval(int seconds) . 19

4.1.2.16 setReconnectMaxDelay(int seconds) . 19

4.1.2.17 disconnect() . 20

4.1.2.18 getInfo() . 20

4.1.3 Member Data Documentation . 20

4.1.3.1 NOTIFY_SERVER_UP . 20

4.1.3.2 NOTIFY_SERVER_DOWN . 20

4.1.3.3 NOTIFY_DATA_SYNC . 20

4.1.3.4 NOTIFY_DATA_RESYNC . 20

4.1.3.5 NOTIFY_SUBSCRIBE_ALLOW . 21

4.1.3.6 NOTIFY_SUBSCRIBE_DENY . 21

4.1.3.7 NOTIFY_PUBLISH_OK . 21

4.1.3.8 NOTIFY_PUBLISH_FAILED . 21

4.1.3.9 NOTIFY_PUBLISH_DENIED . 21

4.1.3.10 NOTIFY_PUBLISH_NO_SUBSCRIBER . 21

4.1.3.11 NOTIFY_UNSUPPORTED_BROWSER . 22

4.1.3.12 CONSTANT_WINDOW_BACKOFF . 22

4.1.3.13 TRUNCATED_EXPONENTIAL_BACKOFF . 22

Index 22

Generated by Doxygen

Chapter 1

Developer's Guide

This guide includes the following sections:

• Overview

• Creating JavaScript clients for MigratoryData Server

• Examples

1.1 Overview

This application programming interface (API) contains all the necessary operations for connecting to a cluster of one
or more MigratoryData servers, subscribing to subjects, getting real-time messages for the subscribed subjects, and
publishing real-time messages.

Before reading this manual, it is recommended to read MigratoryData Architecture Guide (PDF, HTML).

1.2 Creating JavaScript clients for MigratoryData Server

A typical API usage is as follows:

1.2.1 Step 1 - Include the library

For using this API please reference in your web application the file migratorydata-client.js which is
located in the folder lib of this API package.

1.2.2 Step 2 - Specify the cluster of MigratoryData servers where to connect to

Use the API method MigratoryDataClient.setServers() to specify one or more MigratoryData servers to which your
JavaScript client will connect to. In fact, the JavaScript client will connect to only one of the MigratoryData servers
in this list. But, defining two or more MigratoryData servers is recommended to achieve fail-over. Supposing the
MigratoryData server to which the JavaScript client connected goes down, then the API will automatically reconnect
to another MigratoryData server in the list.

If you define two or more MigratoryData servers, then all the MigratoryData servers should provide the same level
of data redundancy, by making available for subscription the same set of subjects.

http://migratorydata.com/documentation/pdf/Architecture.pdf
http://migratorydata.com/documentation/html/Architecture/Architecture.html

2 Developer's Guide

1.2.3 Step 3 - Define the handler function for real-time messages

Use the API method MigratoryDataClient.setMessageHandler() to define the message handler, a function defined
by your web application that will handle the real-time messages received from a MigratoryData server. The message
handler must have the following signature:

function <messageHandlerFunction>(Object messages);

where <messageHandlerFunction> can be any function name of your choice. Its messages argument is
an array of messages, where each message in the array is an object having the following properties:

• subject - the subject of the message

• content - the content of the message

• fields - an array of fields where each field is an object with two properties: name (the name of the field)
and value (the value of the field)

• isSnapshot - indicate whether the message is an initial snapshot message or not

1.2.4 Step 4 - Define the handler function for status notifications

Use the API method MigratoryDataClient.setStatusHandler() to define the status handler, a function defined by your
web application that will handle the status notifications. The status handler must have the following signature:

function <statusHandlerFunction>(Object status);

where <statusHandlerFunction> can be any function name of your choice. Its status argument is an
object having two properties:

• type - the type of the status notification

• info - the detail information of the status notification

1.2.5 Step 5 - Subscribe to subjects and publish messages

Use the API method MigratoryDataClient.subscribe() to specify interest in receiving real-time messages having as
subjects the strings provided in the parameter of this API method. You can call the API method MigratoryData←↩

Client.subscribe() at any time to subscribe to further subjects. To unsubscribe from subscribed subjects, use the
API method MigratoryDataClient.unsubscribe().

Use the API method MigratoryDataClient.publish() to publish messages.

1.2.6 Step 6 - Handle the real-time messages and status notifications

Handle the received messages in your message handler defined above, and, optionally, handle the status notifica-
tions in your status handler defined above (you may choose to ignore the status notifications by not defining a status
handler).

Generated by Doxygen

1.3 Examples 3

1.3 Examples

Examples built with this API are available in the folder examples of this API package; start with the README file
which explains how to run them.

Generated by Doxygen

4 Developer's Guide

Generated by Doxygen

Chapter 2

Deprecated List

Member MigratoryDataClient.NOTIFY_PUBLISH_NO_SUBSCRIBER

no more in use.

6 Deprecated List

Generated by Doxygen

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

MigratoryDataClient
This class implements all the necessary operations for connecting to a cluster of one or more
MigratoryData servers, subscribing to subjects, getting real-time messages for the subscribed
subjects, and publishing real-time messages . 9

8 Class Index

Generated by Doxygen

Chapter 4

Class Documentation

4.1 MigratoryDataClient Class Reference

This class implements all the necessary operations for connecting to a cluster of one or more MigratoryData servers,
subscribing to subjects, getting real-time messages for the subscribed subjects, and publishing real-time messages.

Public Member Functions

• void setServers (string[] servers, boolean connect)

Specify a cluster of one or more MigratoryData servers to which the client will connect to.

• void setMessageHandler (function messageHandler)

Specify a custom function name used to process the real-time messages received from a MigratoryData server.

• void setStatusHandler (function statusHandler)

Specify a custom function name used to process the status notifications.

• void setEntitlementToken (string token)

Assign an authorization token to the client.

• void subscribe (string[] subjects)

Subscribe to one or more subjects.

• void subscribeWithHistory (string[] subjects, int numberOfHistoricalMessages)

Subscribe to one or more subjects after getting historical messages for those subjects.

• void subscribeWithConflation (string[] subjects, int conflationMillis)

Subscribe to one or more subjects with conflation.

• void unsubscribe (string[] subjects)

Unsubscribe from one or more subjects.

• void publish (Object message)

Publish a message.

• string[] getSubjects ()

Return the list of subscribed subjects.

• void notifyAfterReconnectRetries (int retries)

Define the number of failed attempts to connect to one or more MigratoryData servers before triggering a status
notification MigratoryDataClient.NOTIFY_SERVER_DOWN.

• void setQuickReconnectInitialDelay (int seconds)

Define the number of seconds to wait before attempting to reconnect to the cluster after a connection failure is
detected.

• void setQuickReconnectMaxRetries (int retries)

10 Class Documentation

Define the maximum number of retries for the Quick Reconnect failover phase.
• void setReconnectPolicy (string policy)

Define the reconnect policy to be used after the Quick Reconnect phase.
• void setReconnectTimeInterval (int seconds)

Define the time interval used for the reconnect schedule after the Quick Reconnect phase.
• void setReconnectMaxDelay (int seconds)

Define the maximum reconnect delay for the MigratoryDataClient.TRUNCATED_EXPONENTIAL_BACKOFF policy.
• void disconnect ()

Disconnect from the connected MigratoryData server and dispose the resources used by the connection.
• string getInfo ()

Return various statistical information.

Public Attributes

• string NOTIFY_SERVER_UP

Indicate that the client successfully connected to a MigratoryData server.
• string NOTIFY_SERVER_DOWN

Indicate that the client failed to connect to a MigratoryData server.
• string NOTIFY_DATA_SYNC

After a failover reconnection, the client synchronized a subscribed subject with the latest message available for that
subject, as well as with all messages published during the failover for that subject.

• string NOTIFY_DATA_RESYNC

After a failover reconnection, the client synchronized a subscribed subject with the latest message available for that
subject, but not with the potential messages published during the failover, therefore behaving as a new client.

• string NOTIFY_SUBSCRIBE_ALLOW

Indicate that the client was authorized to subscribe to a subject.
• string NOTIFY_SUBSCRIBE_DENY

Indicate that the client was not authorized to subscribe to a subject.
• string NOTIFY_SUBSCRIBE_TIMEOUT
• string NOTIFY_PUBLISH_OK

Indicate that the client successfully published a message.
• string NOTIFY_PUBLISH_FAILED

Indicate that the client was unable to publish a message.
• string NOTIFY_PUBLISH_DENIED

Indicate that the client was unable to publish a message because it is not allowed by the entitlement rules you defined.
• string NOTIFY_PUBLISH_NO_SUBSCRIBER

Indicate that the client was unable to publish a message because there is no client subscribed to the subject of the
message.

• string NOTIFY_UNSUPPORTED_BROWSER

Indicate that the client runs in a browser which is not supported by the API.
• string CONSTANT_WINDOW_BACKOFF

A constant used to define the reconnect policy.
• string TRUNCATED_EXPONENTIAL_BACKOFF

A constant used to define the reconnect policy.

4.1.1 Detailed Description

This class implements all the necessary operations for connecting to a cluster of one or more MigratoryData servers,
subscribing to subjects, getting real-time messages for the subscribed subjects, and publishing real-time messages.

In this reference manual, the following type notations are used: int, string, bool, void, and the notation string[]

(indicating an array of strings) to better characterize the API. JavaScript is a dynamic language that doesn't have declared types,

the type notations used in this document are only included to enhance the documentation.

Generated by Doxygen

4.1 MigratoryDataClient Class Reference 11

4.1.2 Member Function Documentation

4.1.2.1 void MigratoryDataClient.setServers (string[] servers, boolean connect)

Specify a cluster of one or more MigratoryData servers to which the client will connect to.

If you specify two or more MigratoryData servers, then all these MigratoryData servers should provide the same
level of data redundancy, by making available for subscription the same set of subjects. This is required for achieving
(weighted) load balancing, failover, and guaranteed message delivery of the system. In this way, the MigratoryData
servers of the servers list form a cluster.

For example, to connect to a cluster formed of two MigratoryData servers installed at the addresses p1.←↩

example.com and p2.example.com, and configured to accept clients on the standard HTTP port 80, the
following code can be used:

var servers = new Array("http://p1.example.com:80", "http://p2.example.com:80");
MigratoryDataClient.setServers(servers);

or, given the fact that the standard HTTP port 80 is used by default for URLs and using the JavaScript square
bracket notation for arrays, a more concise JavaScript code can be used:

MigratoryDataClient.setServers(["http://p1.example.com", "http://p2.example.com"]);

To achieve load-balancing, the API connects the client to a MigratoryData server chosen randomly from the
servers list. In this way, the load is balanced among all the members of the cluster.

Moreover, the API supports weighted load-balancing. This feature is especially useful if the MigratoryData servers in the cluster

are installed on machines with different capacities. You can assign to each member of the cluster a weight ranging from 0 to

100. This weight assignment is a hint provided to the API to select with a higher probability a MigratoryData server with a higher

weight either initially when the client connects to the cluster or later during a failover reconnection.

Supposing the address p1.example.com corresponds to a machine that is twice more powerful than the machine having the

address p2.example.com, then you can assign to p1.example.com a weight 100 and to p2.example.com a weight

50 by prefixing each address with the assigned weight as follows:

MigratoryDataClient.setServers(["100 http://p1.example.com", "50 http://p2.example.←↩

com"]);

The API assigns a default weight 100 to the addresses not prefixed with a specific weight.

To achieve failover, if the connection between the client and a MigratoryData server is broken, then the API will
automatically detect the failure and will select another MigratoryData server from the servers list. If the client
fails to connect to the new selected server, a status notification MigratoryDataClient.NOTIFY_SERVER_DOWN
will be triggered (unless you modify the number of failed attempts with MigratoryDataClient.notifyAfterReconnect←↩

Retries()), and a new MigratoryData server in the cluster will be selected again and again until the client will be able
to connect to one of the MigratoryData servers in the cluster. When successfully connected, the API will trigger a
status notification MigratoryDataClient.NOTIFY_SERVER_UP.

Furthermore, if guaranteed message delivery is enabled, then the potential messages published for a subscribed subject during

the failover period, will be automatically retrieved from the cache of the MigratoryData server to which the client reconnects to

and a status notification MigratoryDataClient.NOTIFY_DATA_SYNC will be triggered for that subject.

If, for example, the failover period is abnormally long, and the client is not able to retrieve, after a failover reconnection, the

messages published during the failover period for one of its subscribed subjects, then the API will retrieve only the most recent

message available for that subject and will trigger a MigratoryDataClient.NOTIFY_DATA_RESYNC status notification for that

subject, the client behaving as a new client which connects to the cluster at the moment of the failover reconnection.

For a complete discussion related to load balancing, failover, and guaranteed message delivery features see the
MigratoryData Architecture Guide (PDF, HTML).

Generated by Doxygen

http://migratorydata.com/documentation/pdf/Architecture.pdf
http://migratorydata.com/documentation/html/Architecture/Architecture.html

12 Class Documentation

Parameters

servers An array of strings where each string represents the network address (IP address or DNS domain
name and its corresponding port) of a MigratoryData server, optionally prefixed by a weight ranging
from 0 to 100. If the weight prefix is not provided to an address, then the API will automatically
assign to that address a default weight 100.

connect An optional parameter which defaults to false. In order to optimize the communication with the
server (especially for old browsers), the library can postpone connecting to the server until the first
subscribe or publish operation is performed, and therefore NOTIFY_SERVER_UP is not received
until the first subscribe or publish operation is performed. In order to connect to the server
immediately, without needing to subscribe or publish, set this optional paramter on true.

4.1.2.2 void MigratoryDataClient.setMessageHandler (function messageHandler)

Specify a custom function name used to process the real-time messages received from a MigratoryData server.

This API call is used to define the message handler which is a function defined by your application that will handle
the real-time messages received from a MigratoryData server. Your message handler must have the following
signature:

function <messageHandlerFunction>(Object messages);

where <messageHandlerFunction> can be any function name of your choice. Its messages argument is
an array of messages, where each message in the array is an object having the following properties:

• subject - the subject of the message

• content - the content of the message

• fields - an array of fields where each field is an object with two properties: name (the name of the field)
and value (the value of the field)

• isSnapshot - indicate whether the message is an initial snapshot message or not

• replyToSubject - the subject used to reply to this message

This is a code example:

MigratoryDataClient.setMessageHandler(messageHandler);

function messageHandler(messages) {
var out = "Got message(s): [";
for (var i = 0; i < messages.length; i++) {

out += messages[i].subject + " = " + messages[i].content + ", fields = [";
for (var j = 0; j < messages[i].fields.length; j++) {

out += messages[i].fields[j].name + " = " + messages[i].fields[j].value + " ";
}
out += "]";

}
out += "]";
alert(out);

}

Generated by Doxygen

4.1 MigratoryDataClient Class Reference 13

Parameters

messageHandler The name of a custom function used to handle the real-time messages.

4.1.2.3 void MigratoryDataClient.setStatusHandler (function statusHandler)

Specify a custom function name used to process the status notifications.

This API call is used to define the status handler which is a function defined by your application that will handle the
status notifications. Your status handler must have the following signature:

function <statusHandlerFunction>(Object status);

where <statusHandlerFunction> can be any function name of your choice. Its status argument is an
object having two properties:

• type - the type of the status notification

• info - the detail information of the status notification

The possible values for the type of the status notifications are:

• MigratoryDataClient.NOTIFY_SERVER_UP indicates that the client successfully connected to the
MigratoryData server provided in the detail information of the status notification

• MigratoryDataClient.NOTIFY_SERVER_DOWN indicates that the client was not able to connect to
the MigratoryData server provided in the detail information of the status notification

• MigratoryDataClient.NOTIFY_DATA_SYNC indicates that, after a failover reconnection, the client
successfully synchronized the subject given in the detail information of the status notification. Moreover, the
client received the messages published during the failover period for this subject.

• MigratoryDataClient.NOTIFY_DATA_RESYNC indicates that, after a failover reconnection, the
client successfully synchronized the subject given in the detail information of the status notification. How-
ever, the client have not received the potential messages published during the failover period for this subject,
the client behaving like a new client which just connected to the MigratoryData server.

• MigratoryDataClient.NOTIFY_SUBSCRIBE_ALLOW indicates that the client – identified with the
token given in the argument of MigratoryDataClient.setEntitlementToken() – is allowed to
subscribe to the subject provided in the detail information of the status notification

• MigratoryDataClient.NOTIFY_SUBSCRIBE_DENY indicates that the client – identified with the
token given in the argument of MigratoryDataClient.setEntitlementToken() – is not allowed
to subscribe to the subject provided in the detail information of the status notification

• MigratoryDataClient.NOTIFY_PUBLISH_OK indicates that the client successfully published the
message having the closure data provided in the detail information of the status notification

Generated by Doxygen

14 Class Documentation

• MigratoryDataClient.NOTIFY_PUBLISH_FAILED indicates that the client was unable to publish
the message having the closure data provided in the detail information of the status notification

• MigratoryDataClient.NOTIFY_PUBLISH_DENIED indicates that the client was unable to pub-
lish the message having the closure data provided in the detail information of the status notification be-
cause the client – identified with the token given in the argument of MigratoryDataClient.set←↩

EntitlementToken() – is not allowed to publish on the subject of the message

• MigratoryDataClient.NOTIFY_PUBLISH_NO_SUBSCRIBER indicates that the client was unable
to publish the message having the closure data provided in the detail information of the status notification
because there is no client subscribed to the subject of the message

This is a code example:

MigratoryDataClient.setStatusHandler(statusHandler);

function statusHandler(status) {
alert("Got status notification, type = " + status.type + ", info = " + status.info);

}

Parameters

statusHandler The name of a custom function used to handle the status notifications.

4.1.2.4 void MigratoryDataClient.setEntitlementToken (string token)

Assign an authorization token to the client.

To define which users of your application have access to which subjects, you will first have to set the pa-
rameter Entitlement on true in the configuration file of the MigratoryData server — see the parameter
Entitlement in the MigratoryData Configuration Guide (PDF, HTML).

Then, you will have to use the entitlement-related part of the MigratoryData Extension API to allow or deny certain
users to subscribe / publish to certain subjects.

Parameters

token A string representing an authorization token.

4.1.2.5 void MigratoryDataClient.subscribe (string[] subjects)

Subscribe to one or more subjects.

Subscribe for real-time messages having as subjects the strings provided in the subjects parameter.

As an example, supposing messages are market data updates having as subjects stock names. Then, to subscribe
for the messages having as subjects /stocks/NYSE/IBM and /stocks/Nasdaq/MSFT the following code
will be used:

Generated by Doxygen

http://migratorydata.com/documentation/pdf/Configuration.pdf
http://migratorydata.com/documentation/html/Configuration/Configuration.html

4.1 MigratoryDataClient Class Reference 15

var subjects = new Array("/stocks/NYSE/IBM", "/stocks/Nasdaq/MSFT");
MigratoryDataClient.subscribe(subjects);

or more simple, using the JavaScript square bracket notation for arrays:

MigratoryDataClient.subscribe(["/stocks/NYSE/IBM", "/stocks/Nasdaq/MSFT"]);

The subjects are strings having a particular syntax. See the Chapter "Concepts" in the MigratoryData Architecture
Guide (PDF, HTML) to learn about the syntax of the subjects.

Parameters

subjects An array of strings representing subjects.

4.1.2.6 void MigratoryDataClient.subscribeWithHistory (string[] subjects, int numberOfHistoricalMessages)

Subscribe to one or more subjects after getting historical messages for those subjects.

Attempt to get the number of historical messages as defined by the argument numberOfHistorical←↩

Messages, for each subject in the argument subjects, then subscribe for real-time messages having as sub-
jects the strings provided in the subjects parameter.

When Guranteed Message Delivery is enabled, each MigratoryData server in the cluster maintains an in-memory
cache with historical messages for each subject. The cache of each subject is available in all servers of the cluster.
The maximum number of messages held in cache is defined by the parameter MaxCachedMessagesPer←↩

Subject of the MigratoryData server which defaults to 1,000 messages. The historical messages are continuously
removed from the cache, but it is guaranteed that they are available in the cache at least the number of seconds
defined by the parameter CacheExpireTime which defaults to 180 seconds.

If the value of numberOfHistoricalMessages is higher then the number of historical messages available in
the cache, then the client will receive only the messages available in the cache. As a consequence, if you use a
value higher than the value of the parameter MaxCachedMessagesPerSubject of the MigratoryData server
(which defaults to 1000), then you will get the entire cache before subscribing for real-time messages for the subjects
specified with the API call.

var subjects = new Array("/stocks/NYSE/IBM", "/stocks/Nasdaq/MSFT");
MigratoryDataClient.subscribeWithHistory(subjects, 10);

or more simple, using the JavaScript square bracket notation for arrays:

MigratoryDataClient.subscribeWithHistory(["/stocks/NYSE/IBM", "/stocks/Nasdaq/MSFT"], 10);

The subjects are strings having a particular syntax. See the Chapter "Concepts" in the MigratoryData Architecture
Guide (PDF, HTML) to learn about the syntax of the subjects.

Parameters

subjects An array of strings representing subjects.

numberOfHistoricalMessages The number of historical messages to be retrieved from the cache of the
MigratoryData server. A value 0 means that no historical messages has to be
retrieved and, in this case, this API method is equivalent to the API method
MigratoryDataClient.subscribe(). A value larger that the value of the parameter
MaxCachedMessagesPerSubject means the entire cache is retrieved.

Generated by Doxygen

http://migratorydata.com/documentation/pdf/Architecture.pdf
http://migratorydata.com/documentation/html/Architecture/Architecture.html
http://migratorydata.com/documentation/pdf/Architecture.pdf
http://migratorydata.com/documentation/html/Architecture/Architecture.html

16 Class Documentation

4.1.2.7 void MigratoryDataClient.subscribeWithConflation (string[] subjects, int conflationMillis)

Subscribe to one or more subjects with conflation.

Subscribe for real-time messages having as subjects the strings provided in the subjects parameter.

If the optional parameter conflationMillis is used, then for each subject in the subjects list given in
argument, its messages will be aggregated in the MigratoryData server and published every conflation←↩

Millismilliseconds as aggregated data (containing only the latest value for that subject and its latest field values).
The value of conflationMillis should be a multiple of 100 milliseconds, otherwise the MigratoryData server
will round it to the nearest value multiple of 100 milliseconds (e.g. 76 will be rounded to 0, 130 will be rounded
to 100, 789 will be rounded to 700, ...). If the value of conflationMillis is 0 (or is rounded to 0), then no
conflation will apply, and data publication will be message-by-message with no message aggregation.

As an example, supposing the messages are market data updates having as subjects stock names. Then, to
subscribe for the messages having as subjects /stocks/NYSE/IBM and /stocks/Nasdaq/MSFT using
1-second conflation the following code will be used:

var subjects = new Array("/stocks/NYSE/IBM", "/stocks/Nasdaq/MSFT");
MigratoryDataClient.subscribeWithConflation(subjects, 1000);

or more simple, using the JavaScript square bracket notation for arrays:

MigratoryDataClient.subscribeWithConflation(["/stocks/NYSE/IBM", "/stocks/Nasdaq/MSFT"], 1000);

The subjects are strings having a particular particular syntax. See the Chapter "Concepts" in the MigratoryData
Architecture Guide (PDF, HTML) to learn about the syntax of the subjects.

Parameters

subjects An array of strings representing subjects.

conflationMillis An optional argument defining the number of milliseconds used to aggregate ("conflate") the
messages for each subject in the subjects list; default value is 0 meaning that no
conflation will apply, and data publication will be message-by-message with no message
aggregation.

4.1.2.8 void MigratoryDataClient.unsubscribe (string[] subjects)

Unsubscribe from one or more subjects.

Unsubscribe from the subscribed subjects provided in the subjects parameter.

Parameters

subjects An array of strings representing subjects.

4.1.2.9 void MigratoryDataClient.publish (Object message)

Publish a message.

Generated by Doxygen

http://migratorydata.com/documentation/pdf/Architecture.pdf
http://migratorydata.com/documentation/html/Architecture/Architecture.html

4.1 MigratoryDataClient Class Reference 17

The message format is as follows:

{ subject: "some-subject",
content: "some-content",
fields: [

{field-name-1: "field-value-1"},
{field-name-2: "field-value-2"},
...

],
replyToSubject: "some-reply-subject",
closure: "some-message-id"

}

If the message includes a replyToSubject, then it acts as a request. The clients which receive the message, will be
able to reply by sending a message having as subject the reply subject defined by replyToSubject.

If the message includes a closure, then a status notification will be provided to inform whether the message publi-
cation has been successful or failed.

Parameters

message A JavaScript object having the structure defined above.

4.1.2.10 string [] MigratoryDataClient.getSubjects ()

Return the list of subscribed subjects.

Returns

An array of strings representing the subscribed subjects.

4.1.2.11 void MigratoryDataClient.notifyAfterReconnectRetries (int retries)

Define the number of failed attempts to connect to one or more MigratoryData servers before triggering a status
notification MigratoryDataClient.NOTIFY_SERVER_DOWN.

Parameters

retries The number of the failed attempts to connect to one or more MigratoryData servers before triggering a
status notification MigratoryDataClient.NOTIFY_SERVER_DOWN; default value is 1.

4.1.2.12 void MigratoryDataClient.setQuickReconnectInitialDelay (int seconds)

Define the number of seconds to wait before attempting to reconnect to the cluster after a connection failure is
detected.

Generated by Doxygen

18 Class Documentation

Connection Failure Detection

Connection failure is detected immediately for almost all users running modern browsers. For a few users running
modern browsers (and being subject to temporary, atypical network conditions) as well as for all users running older
browsers without WebSocket support, connection failure is detected after 30-40 seconds.

Reconnection Phases and Policies

When a connection failure is detected, the API will attempt to reconnect to the servers of the MigratoryData cluster
as follows: First, it will attempt to reconnect up to a number of times as defined by MigratoryDataClient.setQuick←↩

ReconnectMaxRetries() using small delays between retries (Quick Reconnection Phase). If the connection cannot
be established after the Quick Reconnection Phase, then the API will attempt to reconnect less frequently according
to the policy defined by MigratoryDataClient.setReconnectPolicy().

The delays between retries are computed acoording to the following algoritm where the values of the variables
involved are defined by the API methods having substantially the same names:

Quick Reconnect Phase (retries <= quickReconnectMaxRetries)

(retries starts with 1 and increment by 1 at each quick reconnect)

reconnectDelay = quickReconnectInitialDelay * retries - random(0, quickReconnectInitialDelay)

After Quick Reconnect Phase (retries > quickReconnectMaxRetries)
--

(reset retries to start with 1 and increment by 1 at each reconnect)

If reconnectPolicy is CONSTANT_WINDOW_BACKOFF, then

reconnectDelay = reconnectTimeInterval

else if reconnectPolicy is TRUNCATED_EXPONENTIAL_BACKOFF, then

reconnectDelay = min(reconnectTimeInterval * (2 ^ retries) - random(0, reconnectTimeInterval * retries), reconnectMaxDelay)

For a few users running modern browsers (and being subject to temporary, atypical network conditions) as well as for
all users running older browsers without WebSocket support, if reconnectDelay computed with the algorithm
above is less than 10 seconds, then it is rounded to 10 seconds.

Parameters

seconds The number of seconds to wait before attempting to reconnect to the cluster; default value is 5
seconds.

Generated by Doxygen

4.1 MigratoryDataClient Class Reference 19

4.1.2.13 void MigratoryDataClient.setQuickReconnectMaxRetries (int retries)

Define the maximum number of retries for the Quick Reconnect failover phase.

Parameters

retries The maximum number of quick reconnect retries; default value is 3.

4.1.2.14 void MigratoryDataClient.setReconnectPolicy (string policy)

Define the reconnect policy to be used after the Quick Reconnect phase.

See MigratoryDataClient.setQuickReconnectInitialDelay() to learn about the Quick Reconnect phase and the recon-
nect schedule for the policy defined by this method.

Parameters

policy The reconnect policy to be used after the Quick Reconnect phase. The possible values are
MigratoryDataClient.CONSTANT_WINDOW_BACKOFF and
MigratoryDataClient.TRUNCATED_EXPONENTIAL_BACKOFF; the default value is
MigratoryDataClient.TRUNCATED_EXPONENTIAL_BACKOFF.

4.1.2.15 void MigratoryDataClient.setReconnectTimeInterval (int seconds)

Define the time interval used for the reconnect schedule after the Quick Reconnect phase.

See MigratoryDataClient.setQuickReconnectInitialDelay() to learn about the Quick Reconnect phase and how the
value defined by this API method is used for the reconnect schedule.

Parameters

seconds A time interval expressed in seconds used for reconnect schedule; default is 20 seconds.

4.1.2.16 void MigratoryDataClient.setReconnectMaxDelay (int seconds)

Define the maximum reconnect delay for the MigratoryDataClient.TRUNCATED_EXPONENTIAL_BACKOFF policy.

See MigratoryDataClient.setQuickReconnectInitialDelay() to learn how the value defined by this API method is used.

Parameters

seconds The maximum reconnect delay when the policy
MigratoryDataClient.TRUNCATED_EXPONENTIAL_BACKOFF is used; default value is 360
seconds.

Generated by Doxygen

20 Class Documentation

4.1.2.17 void MigratoryDataClient.disconnect ()

Disconnect from the connected MigratoryData server and dispose the resources used by the connection.

This method should be called when the connection is no longer necessary.

4.1.2.18 string MigratoryDataClient.getInfo ()

Return various statistical information.

Returns

A string with various statistical information useful for debugging or logging.

4.1.3 Member Data Documentation

4.1.3.1 string MigratoryDataClient.NOTIFY_SERVER_UP

Indicate that the client successfully connected to a MigratoryData server.

This constant indicates that the client successfully connected to one of the MigratoryData servers defined with the
API method MigratoryDataClient.setServers().

4.1.3.2 string MigratoryDataClient.NOTIFY_SERVER_DOWN

Indicate that the client failed to connect to a MigratoryData server.

This constant indicates that the client failed to connect to one of the MigratoryData servers defined with the API
method MigratoryDataClient.setServers().

4.1.3.3 string MigratoryDataClient.NOTIFY_DATA_SYNC

After a failover reconnection, the client synchronized a subscribed subject with the latest message available for that
subject, as well as with all messages published during the failover for that subject.

This constant indicates that the client successfully synchronized the subject provided in the detail information of
the status notification. Also, the potential messages published for that subject during the failover period have been
successfully retrieved at the moment of the reconnection.

4.1.3.4 string MigratoryDataClient.NOTIFY_DATA_RESYNC

After a failover reconnection, the client synchronized a subscribed subject with the latest message available for that
subject, but not with the potential messages published during the failover, therefore behaving as a new client.

This constant indicates that the client successfully synchronized the subject provided in the detail information of the
status notification. However, the client was unable to get the messages published during the failover. Therefore, it
behaves like a new client which connects to the MigratoryData server at the moment of the failover reconnection.

Generated by Doxygen

4.1 MigratoryDataClient Class Reference 21

4.1.3.5 string MigratoryDataClient.NOTIFY_SUBSCRIBE_ALLOW

Indicate that the client was authorized to subscribe to a subject.

This constant indicates that the client – identified with the token defined with the API method MigratoryData←↩

Client.setEntitlementToken() – is allowed to subscribe to the subject provided in the detail information of the status
notification.

4.1.3.6 string MigratoryDataClient.NOTIFY_SUBSCRIBE_DENY

Indicate that the client was not authorized to subscribe to a subject.

This constant indicates that the client – identified with the token defined with the API method MigratoryData←↩

Client.setEntitlementToken() – is not allowed to subscribe to the subject provided in the detail information of the
status notification.

4.1.3.7 string MigratoryDataClient.NOTIFY_PUBLISH_OK

Indicate that the client successfully published a message.

This constant is used to indicate that the publication of the message, having the closure provided in the detail
information of the status notification, has succeeded.

4.1.3.8 string MigratoryDataClient.NOTIFY_PUBLISH_FAILED

Indicate that the client was unable to publish a message.

This constant is used to indicate that the publication of the message, having the closure provided in the detail
information of the status notification, has failed.

4.1.3.9 string MigratoryDataClient.NOTIFY_PUBLISH_DENIED

Indicate that the client was unable to publish a message because it is not allowed by the entitlement rules you
defined.

This constant is used to indicate that the publication of the message, having the closure provided in the detail
information of the status notification, has failed. The publication failed because the client – identified with the token
defined with the API method MigratoryDataClient.setEntitlementToken() – is not allowed to publish on the subject of
the message.

4.1.3.10 string MigratoryDataClient.NOTIFY_PUBLISH_NO_SUBSCRIBER

Indicate that the client was unable to publish a message because there is no client subscribed to the subject of the
message.

This constant is used to indicate that the publication of the message, having the closure provided in the detail
information of the status notification, has failed. The publication failed because there is no client then subscribed to
the subject of the message.

Deprecated no more in use.

Generated by Doxygen

22 Class Documentation

4.1.3.11 string MigratoryDataClient.NOTIFY_UNSUPPORTED_BROWSER

Indicate that the client runs in a browser which is not supported by the API.

This constant indicates that the client tries to run in a browser which is not supported by the API.

The API has support for all standard browsers for desktops and mobile devices. It has support for all recent versions
of these standard browsers as well as for older versions — as old as Internet Explorer version 6 (released in 2001).
However browsers older that IE6 or non-standard browsers might not be supported by the API.

4.1.3.12 string MigratoryDataClient.CONSTANT_WINDOW_BACKOFF

A constant used to define the reconnect policy.

See MigratoryDataClient.setQuickReconnectInitialDelay() for more details about this policy.

4.1.3.13 string MigratoryDataClient.TRUNCATED_EXPONENTIAL_BACKOFF

A constant used to define the reconnect policy.

See MigratoryDataClient.setQuickReconnectInitialDelay() for more details about this policy.

Generated by Doxygen

Index

CONSTANT_WINDOW_BACKOFF
MigratoryDataClient, 22

disconnect
MigratoryDataClient, 19

getInfo
MigratoryDataClient, 20

getSubjects
MigratoryDataClient, 17

MigratoryDataClient, 9
CONSTANT_WINDOW_BACKOFF, 22
disconnect, 19
getInfo, 20
getSubjects, 17
NOTIFY_DATA_RESYNC, 20
NOTIFY_DATA_SYNC, 20
NOTIFY_PUBLISH_DENIED, 21
NOTIFY_PUBLISH_FAILED, 21
NOTIFY_PUBLISH_NO_SUBSCRIBER, 21
NOTIFY_PUBLISH_OK, 21
NOTIFY_SERVER_DOWN, 20
NOTIFY_SERVER_UP, 20
NOTIFY_SUBSCRIBE_ALLOW, 20
NOTIFY_SUBSCRIBE_DENY, 21
NOTIFY_UNSUPPORTED_BROWSER, 21
notifyAfterReconnectRetries, 17
publish, 16
setEntitlementToken, 14
setMessageHandler, 12
setQuickReconnectInitialDelay, 17
setQuickReconnectMaxRetries, 18
setReconnectMaxDelay, 19
setReconnectPolicy, 19
setReconnectTimeInterval, 19
setServers, 11
setStatusHandler, 13
subscribe, 14
subscribeWithConflation, 16
subscribeWithHistory, 15
TRUNCATED_EXPONENTIAL_BACKOFF, 22
unsubscribe, 16

NOTIFY_DATA_RESYNC
MigratoryDataClient, 20

NOTIFY_DATA_SYNC
MigratoryDataClient, 20

NOTIFY_PUBLISH_DENIED
MigratoryDataClient, 21

NOTIFY_PUBLISH_FAILED
MigratoryDataClient, 21

NOTIFY_PUBLISH_NO_SUBSCRIBER
MigratoryDataClient, 21

NOTIFY_PUBLISH_OK
MigratoryDataClient, 21

NOTIFY_SERVER_DOWN
MigratoryDataClient, 20

NOTIFY_SERVER_UP
MigratoryDataClient, 20

NOTIFY_SUBSCRIBE_ALLOW
MigratoryDataClient, 20

NOTIFY_SUBSCRIBE_DENY
MigratoryDataClient, 21

NOTIFY_UNSUPPORTED_BROWSER
MigratoryDataClient, 21

notifyAfterReconnectRetries
MigratoryDataClient, 17

publish
MigratoryDataClient, 16

setEntitlementToken
MigratoryDataClient, 14

setMessageHandler
MigratoryDataClient, 12

setQuickReconnectInitialDelay
MigratoryDataClient, 17

setQuickReconnectMaxRetries
MigratoryDataClient, 18

setReconnectMaxDelay
MigratoryDataClient, 19

setReconnectPolicy
MigratoryDataClient, 19

setReconnectTimeInterval
MigratoryDataClient, 19

setServers
MigratoryDataClient, 11

setStatusHandler
MigratoryDataClient, 13

subscribe
MigratoryDataClient, 14

subscribeWithConflation
MigratoryDataClient, 16

subscribeWithHistory
MigratoryDataClient, 15

TRUNCATED_EXPONENTIAL_BACKOFF
MigratoryDataClient, 22

unsubscribe

24 INDEX

MigratoryDataClient, 16

Generated by Doxygen

	1 Developer's Guide
	1.1 Overview
	1.2 Creating JavaScript clients for MigratoryData Server
	1.2.1 Step 1 - Include the library
	1.2.2 Step 2 - Specify the cluster of MigratoryData servers where to connect to
	1.2.3 Step 3 - Define the handler function for real-time messages
	1.2.4 Step 4 - Define the handler function for status notifications
	1.2.5 Step 5 - Subscribe to subjects and publish messages
	1.2.6 Step 6 - Handle the real-time messages and status notifications

	1.3 Examples

	2 Deprecated List
	3 Class Index
	3.1 Class List

	4 Class Documentation
	4.1 MigratoryDataClient Class Reference
	4.1.1 Detailed Description
	4.1.2 Member Function Documentation
	4.1.2.1 setServers(string[] servers, boolean connect)
	4.1.2.2 setMessageHandler(function messageHandler)
	4.1.2.3 setStatusHandler(function statusHandler)
	4.1.2.4 setEntitlementToken(string token)
	4.1.2.5 subscribe(string[] subjects)
	4.1.2.6 subscribeWithHistory(string[] subjects, int numberOfHistoricalMessages)
	4.1.2.7 subscribeWithConflation(string[] subjects, int conflationMillis)
	4.1.2.8 unsubscribe(string[] subjects)
	4.1.2.9 publish(Object message)
	4.1.2.10 getSubjects()
	4.1.2.11 notifyAfterReconnectRetries(int retries)
	4.1.2.12 setQuickReconnectInitialDelay(int seconds)
	4.1.2.13 setQuickReconnectMaxRetries(int retries)
	4.1.2.14 setReconnectPolicy(string policy)
	4.1.2.15 setReconnectTimeInterval(int seconds)
	4.1.2.16 setReconnectMaxDelay(int seconds)
	4.1.2.17 disconnect()
	4.1.2.18 getInfo()

	4.1.3 Member Data Documentation
	4.1.3.1 NOTIFYSERVERUP
	4.1.3.2 NOTIFYSERVERDOWN
	4.1.3.3 NOTIFYDATASYNC
	4.1.3.4 NOTIFYDATARESYNC
	4.1.3.5 NOTIFYSUBSCRIBEALLOW
	4.1.3.6 NOTIFYSUBSCRIBEDENY
	4.1.3.7 NOTIFYPUBLISHOK
	4.1.3.8 NOTIFYPUBLISHFAILED
	4.1.3.9 NOTIFYPUBLISHDENIED
	4.1.3.10 NOTIFYPUBLISHNOSUBSCRIBER
	4.1.3.11 NOTIFYUNSUPPORTEDBROWSER
	4.1.3.12 CONSTANTWINDOWBACKOFF
	4.1.3.13 TRUNCATEDEXPONENTIALBACKOFF

	Index

